GASEOUS CEMS FUNDAMENTALS

ROLAND ZEPECK

BHUBANESWAR, JULY $11^{TH} - 13^{TH}$, 2022

INTERNATIONAL CENTRE FOR SUSTAINABLE CARBON

WHERE DO WE NEED TO MEASURE ?

LEGISLATIVE MONITORING

WHAT IS IT WE ARE INTERESTED IN?

There are plenty of pollutants we can or must measure:

- Particulates:
 - Total Dust or Opacity, Heavy Metals
- Inorganic Compounds:
 - $-CO, CO_2, SO_2, NO/NO_2/NO_x, NH_3, HCI, HF, Total Hg$
- Organic Compounds:
 - THC, Dioxins & Furans
- Reference Values:

 $-O_2$, H₂O, Temperature, Pressure, Gas Velocity / Flow

WHY MONITORING AT ALL??

If we don't know "what and how much", we don't know "how to reduce it"

Emission Monitoring documents the efficiency of Emission Control Activities

REGULATIONS

There are two major ways of regulatory approach for CEMS:

- <u>U.S.A.</u>
 - **US-EPA regulations are laid down in 40CFR60 and ASTM's**
 - Instruments cannot get type-approval there is no scheme like that in USA
 - **Extensive site testing after installation is required**

• EUROPE

- European regulations are laid down in EN's as well as country-specific laws and regulations, f.e. in Germany: TA-Luft, BImSchG, and BImSchV 1 – 44
- ➢ Instruments have to successfully complete type-approval ("TUEV-Test, MCERTS") = QAL 1
- **Extensive site testing after installation is required = QAL 2**

WHY GAS ANALYSIS

Process Monitoring

- Safe fuel
- Optimize process
- Control process
- Automate process
- Quality control
- Safety

Emission Monitoring (CEMS)

- Environmental Regulations
- Environmental protection
- Cleaner Process
- Transparency
- Avoid fines
- CO₂ Emission Trading

RETURN ON INVESTMENT? YES

RETURN ON INVESTMENT? NOT REALLY

TECHNO-COMMERCIAL REQUIREMENTS FOR GAS ANALYZER SYSTEMS

Analyzers

- Stability
- Availability
- Repeatability
- Low detection limits
- No interferences
- Low cost of maintenance

System

- Simple to install
- Low cost of installation
- Easy integration
- Long lifetime
- Accurate data availability

and what about the SAMPLING and CONDITIONING SYSTEM ??

TYPE OF CEMS TECHNIQUE

TYPICAL SHS DESIGN FOR HOT EXTRACTIVE CEMS

KEY POINTS FOR THE SHS

- \checkmark The SHS's MOC should not interfere with the sample gas components
- ✓ Back Purge or Back Flush incl. in-situ pre-filter for the sample probe should be selected based on dust concentration and total flow rate through the probe
- ✓ Position of the sample tube inlet inside the stack should be at a *representative point* with laminar flow
 - ✓ Vertical: i.e. \geq 5 * stack diameter before / \geq 2 * stack dia. after the tube inlet
 - ✓ Horizontal: between 15 and 50% of stack diameter
- ✓ There should be **NO COLDSPOT** possible between Stack Outlet (Tapping Point) and Sample Gas Cooler Inlet
- ✓ Diameter of the sample tube inside the HSL should be selected in correlation to its length and the required flowrate to minimize the sample gas travelling time
 - ✓ For long HSLs a bypass pump should be included
- ✓ Condensate outlet of the sample gas cooler should be safely discharged (highly acidic)

INFRARED TECHNOLOGY

Many gaseous pollutants show absorption band(s) in the infrared wavelength band

- UV-Absorption is used for a number of pollutants like NO and NO_2
- Chemiluminescence is used for NO, NO $_2$, NO $_x$
- FTIR Spectrometry is used as Multicomponent Analyzer
- Tunable Diode Laser Absorption Spectroscopy (TDLAS) is used as Single- or Multicomponent Analyzer - most modern technology
- Flame Ionization Detector (FID) is used for Total Hydrocarbons (THC) and Non-Methane Hydrocarbons (NMHC)
- Gas Chromatography with e.g. FID, PID, FPD is used for individual Hydrocarbons
- UV-Photometry, CVAFS, or CVAAS, together with sample preparation, are used for Total Mercury
- ZrO_2 probes are used for O_2

1	Measurements - Where and What
2	Why Gas Analysis / Requirements
3	Sample Handling & Conditioning System (SHS)
4	Detection Technologies
5	Advantages / Disadvantages

OVERVIEW OF INSITU CEMS

ADVANTAGE / DIS-ADVANTAGE IN-SITU

- No sample transport gases / dust are analysed in their stack environment
 - No SHS required, no secondary interferences by f.e. sample gas cooler wash-out
- Typically Multicomponent Analysers reduction on space and accessories
 - Easier on maintenance
- Unknown / Unexpected interferences possible difficult to consider during calibration
- Measurement is on wet basis, more complex to report dry-basis values (humidity measurement required)
- If a key component fails, the whole Multicomponent Analyzer is down
- Sensitivity is dependent on the available pathlength (stack diameter)
- Analyzer unit is installed up on the stack all maintenance and service has to be done there
- Challenging or impossible for Hazardous Areas

SAMPLE CONDITIONING SYSTEM FOR SINGLE STREAM

SAMPLE CONDITIONING SYSTEM FOR THREE STREAMS, VERSION 1

SAMPLE CONDITIONING SYSTEM FOR THREE STREAMS, VERSION 2

CONVENTIONAL EXTRACTIVE with 2-WAY CALIBRATION

ADVANTAGE / DIS-ADVANTAGE CONVENTIONAL EXTRACTIVE

- Relatively simple way of calibrating the entire CEMS
- Individual analysers: typically no common breakdown possible; Multicomponent Analysers: reduced requirement on space and accessories
- Service & Maintenance to be done in the instrument shelter for analysers, at the tapping point for the SHS
- Measurement and calibration on dry basis
- Requirement of A/C instrument shelter
- Service & Maintenance to be done at the tapping point for the SHS
- With Sample Gas Chillers: probability of loss of components; with High Temperature Systems: probability for higher maintenance and service
- Accuracy of measurement strongly depending on quality of sample handling / sample transport / sample conditioning
- <u>SAMPLE HANDLING SYSTEM VERY OFTEN NOT PROFESSIONALLY DESIGNED!</u>

MEASUREMENT BASED ON DILUTION TECHNIQUE

ADVANTAGE / DIS-ADVANTAGE DILUTION EXTRACTIVE

- Relatively simple way of calibrating the entire CEMS
- Dilution reduces interferences from inappropriate sample handling
- No wash-out of water-soluble components (SO₂, NO₂, etc.)
- With in-situ dilution units: No expensive heated sample lines required
- With individual analysers: typically no common breakdown possible
- Analyser maintenance in the instrument shelter
- Requirement of A/C instrument shelter
- Service & Maintenance to be done at the tapping point for the in-situ dilution unit
- Ambient Air Analysers with lower LDL required = typically more expensive
- Accuracy of measurement depending on stability of dilution; Critical Orifices are sensitive to inlet-pressure changes
- Measurement is on wet basis, more complex to report dry-basis values (additional humidity measurement required)
 - Calibration on dry basis

Credits for providing information for this presentation goes to the following companies:

THANK YOU FOR LISTENING

ANY QUESTIONS?

Technology Collaboration Programme

Roland Zepeck rz@IBD-Zepeck.de