

Tejbir Singh – 4th Jul 2017, India – MPPCB Regulator Workshop

CEMS Analyser Methodology & Technology

Table of Contents Continuous Emission Monitoring System (CEMS)

Brief Overview Industry Processes to CEMS

CEMS Methodologies

CEMS technonologies

Summary

Measurement Techniques - Methodology for CEMS

© ABB

| Slide 3

Process Control / How do you measure 1ppm...

... in a complex gas stream?

Chemical reaction (e.g. Orsat apparatus)

Separate by columns (Gas Chromatography)

lonize by mass or **FTIR Spectrometry**

Continuous Gas Analysis (CGA)

Absorption Spectroscopy Paramagnetism Thermal conductivity Flame ionization **Zirconium Dioxide** TDLAS....

© ABB

| Slide 4

William Thomson, 1st Baron Kelvin, 1824-1907

"If you can't measure it, you can't improve it"

The first generation of flue gas analyzers The beginning of continuous gas analysis

CEMS History Technology System Solution CO, CO_2 , H_2 and O_2 Measuring Throughout Time

Traditional measuring facility		
Analyzers:	4	
SPS / sol. valves:	1/5	
Test gases:	4	
W x H x D:	2600 x 2100 x 600	
Remote maint.:	-	

Modern measuring facility

1
Integrated in analyzer / 1
None (ambient air & gas cells)
800 x 2100 x 600
PC program + Ethernet technology

Modular Automated

| Slide 7

Industries Specific gas analysis Applications – always the right solution

Combustion

Applications: Emission Monitoring Chemical & Metals & Minerals **Gas Producers** Power Oil & Gas Cement Waste disposal Process Petrochemical Control MARKETS Quality TYPICAL APPLICATIONS / MEASURING COMPONENTS Assurance Ammonia Chlorine Iron & Steel Combustion Coal Bin / Mill Inertization. Kiln Inlet (Blast Furnace) Combustion Air Separation Nitric Acid Flares Safety Control Preheater/Calciner ESP, CEMS Aluminum Glass Sulfuric Acid Flue gas treatment Turbogenerator CEMS Hydrogen CEMS Ethylene CEMS CEMS CEMS H2, NH3, Cl2, CO, CO, CO2, NOX, CH₄, C₂H₂, C₂H₄, CO, CO2, NOX, O2, CO, CO2, CH4, NOX, SO2, O2 CO, NOx, SO2, SO2, HCI, HF, CO, CO2, CH4, O2 SO₂, HCI, HF, C3H6 CH4, C2H2, C2H4, O2, H2, CO2 H₂, THC, N₂O NH₃, THC, O₇ CO, NOX, SO2, O2 NH₃, THC, O₂ C.H... In terms of value, process analyzers can help capture millions in profit ! Therefore ~Technology, Capability, Implementation is Mature !! CCAAREB

Improving Energy Efficiency ~ Lower Emissions

Boiler Life Monitoring Lifetime monitoring of boilers Continuous Emission Monitoring (CEMS)

Continuous and quantitative measurement of gas containing CO, Nox, SOx and O2

Simulator

TensoMax

Boiler startup

& control 10-20 % reduction in fuel and auxiliary power For boiler startup

Coal Flow Monitoring

Soot Blowing advisor

Model based heat transfer calculations Reduces soot blowing cost & improved efficiency

Turbine Life

Tracks turbine life consumption based on fatigue, creep of turbine components Improves maintenance planning

Coal fired Thermal Power Plant Measurement Tasks - Example

Integrated Cement Plant Dry Process

Iron and Steel - Blast furnace

Meas Point

1

2

з

4

5

6

	The second	
P		
-2.00	Sec. 1	
10 m	1525 5 5 10	

Measuring Task	Measuring Components	Analyzers	
Transverse Probe (Above Burden / Under Burden) Blast Furnace Optimization	CO, CO ₂ , H ₂ , (O ₂)	NDIR TCD Para)	1. Reduc Leak
Riser Tube Measurement Oven Symmetry	CO, CO ₂ , H ₂	NDIR TCD	2. Combu
Top Gas Measurement - Gas very dirty	CO, CO ₂ , H ₂	NDIR [#] TCD	3. Emissi
Top Gas Measurement - Gas semi clean	CO, CO ₂ , H ₂	NDIR TCD	
Cowper Waste Gas Burner Optimization	CO, O ₂	NDIR Para	
Emission Monitoring	CO, NO _X , SO ₂ , O ₂	NDIR O2 Sensor	PL
6. CO, S(D2, 02, NOx		Τορ

- 1. Reduction of Ore, Quality of Iron, Leakages of Cooling System
- 2. Combustion Control
- 3. Emission Monitoring

Coke Furnace / Sintering Plant / Reheating Furnaces... **Coke Owen - Process Flow Diagram**

Incineration Process **CEMS** Applications – Complex Cocktail

Carbon oxides (CO + CO₂)

Hydrogen chloride (HCI)

Hydrogen fluoride (HF)

Water Vapour (H₂O)

Particulates (dust)

| Slide 14

Analyser technology Process to Emission

Source Emissions Summary ~ CEMS in Industry

1. Each Industry / Process is different

- Fuel and Process are diferent eg.
 - High Dust / Ash Content / Tar & Napthalenes
 - Corrosive components, High Moisture
 - Flamable Gases / Interefering Background Gases

2. Custom Design – Matched to Process

- Understanding of Process and its Flue gas composition and other dynamics are Critical for right selection and execution / performance.
- Cement Kiln Stack : Alternative fuels -Petcoke, Agri waste, Municpal Waste, Tyres, etc Creates gases like HCL / HF, NH3, VOC, etc. Nox Reductions. Regulation needs to catch up to global standards.
- Ferilizer Plant : Prilling Tower NH3 : Saturated Flue gas with very low ppm NH3, Stack Dia 20 mtr with no openings, turblance, Urea flakes, measurment near the top Techniques Hot Wet ~ UV / FTIR
- **Steel Plants** : Coke Owen Batteries Flue gas contains high Tar & Volatiles like Napthalenes Very Challanging requires dosing.
- **Captive Power Plants / Boilers** : Multi Fuels in petcoke SO2 goes upto 2000+ ppm levels, corrosive Arosols.

3. Stack Audit for exact Flue Gas Compositions : Mandatory for Plant.

No one Technology fits all and important to recognise process dynamics flue gas data & Matching right Solutions.

What is Common Understaning or Misconception ?

We Need an Online Montoring for Pollution Board !!

Sir, What do you want /Exact requirement ? Based on yr Experience...

- 2. What Measuring Range ?
- 3. Need your Stack Gas Lab Analysis report ?
- 4. Plant Site Location / Utilities etc required

5. Data Connectivity..existing or New req.

© ABB 7/4/2017 Sales Training Sample Handling | 17 © ABB | Slide 17

Measurement Techniques - Methodology for CEMS

©ABB

| Slide 18

Introduction Zooming on CEMS / PEMS

Source: "EPA Handbook – Continuous Emission Monitoring Systems for Non-criteria Pollutants", 1997

Off-line (At-line)

§ Discontinuous measurement, e.g. laboratory, <u>Orsat apparatus</u>

In-line/In-situ

- § Continuous measurement directly in the <u>stack/process</u>
- **On-line Extractive measurement**
- § Continuous measurement

Dilution Type - Extractive

Sampling and conditioning of the sample gas feeding to the analyzer

| Slide 20

Illustration of Terms - EN 15259 Measurement Plane – Old - New Stacks Challanges !

В

In-situ System Components Example Cross Duct - Dust Monitor / CEMS

Cross Duct Type CEMS PM / Gases

Cross Duct TDLS / Lazer for special gases like HCL/HF/NH3 / H2S, etc

Insitu Probe Types

In-line (In-situ) principle

© ABB 7/4/2017 SHC-PG23 | 24 © ABB | Slide 24

Advantages

- -Direct installation into the process
- -Direct detection of changing concentrations
- -No delay in measurement

Disadvantages

-Detector exposed directly to temperature and pressure

-Specialized alignment / Mounting /Spacing

-No or less protection to dust and high temperatures

-Difficult installation, e.g. top of a stack etc.

-Multi component meas. is Complex and costlier

-Online Corrections of Moisture, T,P, Flow, H2O and not K factors.

-Calibration Cylinders Arrangement on stack

-Technical Skills expert required on top of stack to trouble shoot !

-Approach / Platform / Ladder Challenges / Lifts !

-CPCB Lab Calibration Checks !!

On-line (Direct extractive) principle

Advantages

- -Simple Probe Installation on Stack
- -Sampling Automated No manual sampling necessary
- -Heated Sample line Prefabricated for negligible maintenance
- -Easy access for maintenance at the analyzer
- -Multi component measurement possible
- -Easy calibration, built in Cal Cell options
- -Modern prefabricated Heated Line are leak proof Self Regulating – hardly any maintenance
- -Multi Stack / Chutes meas with one system Normalized Measurement
- Proven Process to Stack

Disadvantages

- Additional effort for sampling and conditioning / Installation
- -Longer response times in absence of fast loop

Extractive – Dilution Type eg. CLD (Chemiluminecense)

Dilution Measurements (Extractive)

- Sample gas diluted with air in a specific ratio
 - § Typically 20:1 up to 100:1
- No measuring components in the dilution air !!
- Complex pneumatic system §
- Influenced by temperature, pressure, viscosity, Dusty environmet
- All effects and influences increase depending on the dilution ratio
- Technology popular in the USA
 - Simulates pollution values in the Ambient §
 - Calbiration gases need to be at Probe inlet §
 - § Analyser Technologies : CLD (Chemiluminecense, UV) Fluro – **PPB/Low PPM sensors** – Originally Lab sensors to Ambient Air Measurmeents.

On-line CEMS method – Extractive Dry

Continuous Operating Methods Open Path Multi-Gas Analyzer – eg. FTIR, DOAS

Gas Sampling Probe – Modular Sampling

Hot Wet extractive operating CEMS System Design

Measuring Methods Typical Techniques

Methodology	y	Principle / Technology	Typically Gases measured	Key Points
Insitu – Cross	s Duct	IR / UV	CO, SO2, NO	Exposed to Flue Gas – T,P, H2O, PM
Insitu Cross [Duct	TDLS (Lazer)	HF, HCL, NH3, H2S, HCN	Exposed to Flue Gas – T.P. H2O. PM
Insitu Folded	beam	IR / UV	NDIR, NDUV	Exposed to Flue Gas – T,P, H2O, PM
Extractive – D	Dry	IR / UV	CO,CO2, SO2, NOx, VOC	Simplified Probe Heated Filter - Auto Clean
Extractive – H Wet (Heated)	Hot	FTIR/UV	NH3, HCL, HF, SO2,NO, VOC	Simplified Probe filter - Auto Clean
Extractive – D	Dilution	IR/CLD/UV Fluro	CO,SO2,NOx	Exposed Probe– T,P, H2O, PM
Unregulated methods like Electrochemical / LEL detectors packaged as Analysers !!!		Lab Technique / Aging / Decay Life / Drifts !!		

Normalisation in CEMS Conversion to standard conditions

Standard conditions means conversion of measured data to normalized conditions at 0°C, 1013 hPa, dry flue gas and specific O_2 content.

mg/Nm ³ = mg/C	$m^3 \frac{t+27}{273}$	$\frac{3,15}{15} \cdot \frac{1}{10}$	1013 013 + p	$\frac{100}{100}$ - 1	$\frac{O}{H_2O} \cdot \frac{2}{2}$	$\frac{21 - O_{2, \text{ st } Ref.}}{21 - O_{2}}$ Stack
mg/Nm ³ : mg / Normalized m ³ Base Values u			ues used for	Standardizin	g Formula	
mg/Om ³ : mg / Operation m ³ (Measuring value)	Measurement Principle	Temperature	Pressure	Water	Oxygen	
O _{2 Ref.:} Oxygen concentration - Reference value	Cold / Dry	No	No	No	Yes	
$O_2 \text{ stack}$: Oxygen concentration - Stack H_2O : Water vapour concentation	Hot / Wet	No	No	Yes	Yes	
T : Temperature in °C P : Pressure in hPa (mbar) •	In-Situ Cross stack	Yes	Yes	Yes	Yes	
Diff. between static pressure soft the sample gas & standard	Cold / Dry		I IV.			

Test gases are introduced at standard conditions (0°C and 1013 hPa).

© ABB

ş

Jul-17 CEM / Legislation | 32 © ABB | Slide 32

pressure

Hot / Wet : Test gases are introduced at standard conditions (0°C and 1013 hPa) Requires no conversion of t & p.

Requires no conversion of t & p. The test gas is measured at the same conditions as the flue gas. Sample & test gas will be moistured to the water dew point of the cooler (e.g. $+3^{\circ}C = 0.75$ Vol%).

Summary on CEMS Methodology

- Remember there is no fit and forget solution so go with reliable proven technology
- Measurements Notified Pollutant gases & online measurement of Dilutants like O2.
- Certified Emission Analyserseg. TUV/MCERT for Assurance levels as its adds security for Legal / Compliance Environment.

2. Other Factors to Note

- Factor the India Specific Challanges like fuels High Ash Coal / High Sulfur Petcoke ~ What works in process should work in stack !
- Ambient Conditions on top of Stack
- Straight Runs / Platforms availability
- Old Stacks Porus / Weak / Availability of openings Single vs Diametrically opposite, etc.
- Ease of Maintenance ~ Field mounted vs Controlled Aircon Mounted

3. Calibrations

- Factor Cost of Calibrations
- Regulatory req may require Daily / Monthly /Quaterly Calibration Checks – Significant Impact !!

4. Plant Operator Data

- Actual Flue Gas data - is Key to correct selection

Measurement Techniques Best Available Technologies (BAT) for for CEMS

IED - Industrial Emission - EU Directive 2010/75/EU Best Available Techniques • BAT and BREF Documents

BREF

BACTs

Permittance for Waste Incinerators, Power Plants, Cement Plants

- § Permittance based on Best Available Techniques BAT
- § Updated, if new BAT Conclusions adopted BATCs
- § BAT is not limited to CEM \rightarrow Main criteria for BAT
 - Use of low-waste technology
 - Consumption and nature of raw material
 - Energy efficiency
 - Preventiton and reduction of emissions
 - BAT AELs \rightarrow Achievable Emission Limits
- § BREF \rightarrow Best Available Techniques Reference Document

Extract of Pollutants to be monitored at Waste Incineration Plants				
Pollutant component	Daily Emission Limit Value ELV ¹⁾	Half - hourly average values	Certified ABB Products	Remark
со	50 mg/Nm ³	100 mg/Nm ³	EL3000 / AO2000 / ACF	Range typ ELV*1,5
SO2	50 mg/Nm ³	200 mg/Nm ³	EL3000 / AO2000 / ACF	
$NO_x (NO + NO_2)$	200 mg/Nm³	400 mg/Nm³	EL3000 / AO2000 / ACF	Sum of NO+NO ₂ NO ₂ sep. if > 5% of NO

Summary • EU Legislative Requirements

Scientific Approach

Plant requirements Directive 2010/75/EU IED	Measurement requirements according to EN 15259	Testing & Approval according to EN 15267	Quality Assurance according to EN 14181
 BAT - AELs Availability Permission criteria 	 Sites Sections Plane 	 Performance test Quality Management Test reports 	 QAL1 - Suitability Test QAL2 - Test at site QAL3 - Monitoring
 Environment Inspections 	• Points	Certification	• AST

© ABB 7/4/2017 ACF-NT | 36 © ABB | Slide 36

Different gas species – different physical properties Different measuring methods needed

Infrared spectroscopy

Selective absorption of IR light

Typical gases: CO_2 , CO, NO, SO_2 , C_2H_4 , NH_3

Ultraviolet spectroscopy

Selective absorption of UV light

Typical gases: NO, NO₂, SO₂, CI_{2} , NH₃

Magnetic susceptibility

Measurement of paramagnetic O₂

Thermal conductivity

Measurement of differences in thermal conductivities

Typical gases: H₂, He

Flame ionization

Ionization of organic compounds in a hydrogen flame

Typical gases: all kind of organic compounds, e.g. CH_4 , C_3H_8

TDLAS (Tunable Lazer Diode)

FTIR Spectroscopy

Gas analyzers **Technology Tree**

Electromagnetic Spectrum

Multi Modular Analyzers – Plug & Play Lower Cost of Ownership with Flexibility

Photometry (UV, IR)

§ Uras26

Limas11

Caldos27

§ Caldos25

§

§

Analyzer modules which are suitable for practically any measuring task:

- © ABB 7/4/2017 A BB Analytical Frankfurt | 40

© ABB

Thermal Conductivity (TCD)

- § ZrO₂ (Zirconia)
- § Flame Ionization (FID)
 - § Fidas

§ Laser In-Situ TDLS

| Slide 40

Photometer Widely used IR **Basics**

Radiation (e.g. light) is energy

Selective absorption of radiation at specific wavelengths

Absorption proportional to the concentration of gas molecules

Length of optical path (L) affects measurement sensitivity

| Slide 41

Measuring method of NDIR / FTIR Absorbance of molecules in the IR Spectrum

Dual Beam NDIR Photometer - Most Popular CO/CO2/NO/SO2/CH4, etc

optional with interference filter and calibration cell

HIGH END NDIR ANALYSERS BASED ON DUAL BEAM **NDIR** : IR Radiation is Modulated through Sample Cell Measurement Chamber and References Side for Lowest Drifts Long Term Stability, Lower Cross Interference from Background gases.

- Single Beam : Dual Beam : GFC : IFC Type NDIR

Dual Beam NDIR Photometer 5 Measuring Components with O2

Fingerprint spectra

UV Photometer The measuring principles

inaustry	Process	Component	
Power & Waste	CEM	NO, NO2, SO2	
Power & Waste	DeNOx	NO, NO2, NH3	
Chemical	Sulfuric Acid	SO2	
Chemical	Nitric Acid	NO, NO2	Measuring
Chemical	Chlorine	Cl2	Filter
Oil & Gas	Biogas Purification	H2S	
Oil & Gas	Natural Gas	H2S	
Oil & Gas	Refinery – SRU CEM	SO2	Gasfilter
Textile	CEM	SO2, H2S, COS	e.g. with NO- filled
Automotive	Exhaust Gases	NO, NO2	7

© ABB 7/4/2017 Enter filename via "View - Header and Footer...". Apply to all. | 46 | Slide 46 Non-dispersive UV spectroscopy (NDUV) for NO₂ and SO₂ measurement

Selection of wavelength with interference filter

Highly selective measuring method: Transparent to H₂O

UV Lamp - Limited Life / Costs

When UV for SO2 with NO+ NO2 – Very low ges eg 25 to 50ppm ranges in high moisture kground

Reference Filter rosive applications eg Chloroalkali

Typical eg: SO2, NO+NO2, NH3, CL2, H2S, COS

FID – VOC (CnHm) Measuring Principle - Selective

- § Based on the ionization of hydrocarbon molecules in a hydrogen diffusion flame (FID)
- § lons are measured via electrodes within an electrical field.
- § lons are attracted to the electrodes and induce a current.
- § The resultant current measured corresponds to the proportion of reduced carbon atoms in the flame.

Fast and direct – TDLS (Lazer) Tunable Diode Lazer Spectroscopy

Gas	Tmax	Pmax
	°C	bar
0 ₂	1500	10
HCI	300	2
NH ₃	400	1.5
HF	300	2
H ₂ S	300	1.5
СО	1500	3
CO ₂	1500	3
H ₂ 0	1500	1.5
HCN	300	2
CH ₄	300	2

No sample transport or conditioning

- § TDLS (is directly installed at the process (in situ).
- § A sample transport or conditioning, like used in extractive systems, is not required.

Fast response

- § TDLS is suitable for fast measurements with a typical response time of 2 seconds.
- § TDLS allows better loop control and is ideally suited for process optimization and safety measurements.

On Line FTIR Spectrometer ~ HOT - WET

Why measuring hot (180°C)?

- § Some gas are easily lost by condensation
- § To prevent acid condensation hot design (180°C)

n Volatile Hydro-Carbons VOC

HCI

HF

Hydrogen Chloride

Hydrogen Fluoride

n

n

n	Ammonia	NH ₃
n	Sulfur Dioxide	SO ₂
n	Nitrogen Oxides	NO
n	Nitrous Oxide	N ₂ O
n	Carbon Monoxide	CO
n	Carbon Dioxide	
n	Oxygen	O ₂

§Certified for CEM applications

MCERTS

- § EU TÜV§ UK MCERTS
- § US EPA compliant

§All Analyzers from a single Supplier

- § FTIR Wishbone interferometer (mechanics) with lifetime warranty
- § ZrO₂ Measurement
- § Flame Ionisation Detector

Oxygen Analyser Modules

Magnos 27

Magnos 206

Thermo Magnetic ~ Non Flowing Reference Magneto Mechanical Dumbell~ Non Flowing Reference

Examples for Suitable Measuring Methods BAT – Best Available Technique by Regulators

Component	Tightest emission limit	Typical approved measuring methods	
СО	50 mg/m³	FTIR, NDIR	
SO2	50 mg/m³	FTIR, NDIR, NDUV	
NO	133 mg/m³	FTIR, NDIR, NDUV	
VOC	10 mg/m ³	FID / FTIR	
HCI / HF / NH3	10 mg/m ³	FTIR, TDLAS, CRDS/ICOS (Hot Wet Technique)	
NH3	10 mg/m³	FTIR, TDLAS, CRDS/ICOS (Hot Wet Technique)	
O2 (as reference)		Paramagnetic, Electrochemical	
Challenges : Cottage Solutions eg. LEL Detectors boxed in as a online Analysers			

Dual Beam - NDIR Analyzer CO/CO₂/SO₂/NO_x Industry Benchmark – Stability & Calibration Reference !

Linearity Deviation	: <u><</u> 1% of span
Repeatability	: <u><</u> 0.5% of span
Zero Drift	: <u><</u> 1% of span / Week
Span Drift	: < 1% of Meas. Value / Week
Detection limit	: <u><</u> 0.5% of span
Response Time	≤ 2.5 sec at sample flow 60L/H
Position Effect	: No influence effect
Supply Variation	: 85 - 250 VAC, 48-63 Hz.

Accuracy / Validation : Optional Gas Filled Calibration Cells: < 0.3 % Drift p.a

Mercury - Hg

| Slide 53

Packaged CEMS Solutions Custom Design to Meet Industries Needs

Emission Systems in Shelters

Free Standing Panels

Summary...

- § Guideline Document For all Stake holders to follow / not Interpret on Convenience ~ Proven Scientific Approach
- § BAT Highlight the various technologies, where what to use
- § Plant / Industry to provide correct stack data Do right things first time
- § Emissions get linked to Fuel Accordingly the Analyser Technique
- § Regulation / Compliance / Legal / Public Certification for reliability / standardisation and is Enforceable.
- § Clarity on Raw / Corrections Values eg. Oxygen corrections
- § Local Calibration Facility / Lab for Linearisation in accordance to certifications
- § Complementary Techniques like PEMS Fill in Blank when system's down

Q & A CEMS – Continuous Emission Monitoring

